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(i.e., HadCM3Q0, Q3, Q10, Q13, and Q15). The ensemble 
simulations are then synthesized through a Bayesian hierar-
chical model to develop probabilistic projections of future 
temperature outcomes with consideration of some uncer-
tain parameters involved in the regional climate modeling 
process. The results suggest that there would be a consist-
ent increasing trend in the near-surface air temperature 
with time periods from 2030s to 2080s. The most likely 
mean temperature in next few decades (i.e., 2030s) would 
be [−2, 2] °C in northern Ontario, [2, 6] °C in the middle, 
and [6, 12] °C in the south, afterwards the mean tempera-
ture is likely to keep rising by ~ 2 °C per 30-years period. 
The continuous warming across the Province would drive 
the lowest mean temperature up to 2  °C in the north and 
the highest mean temperature up to 16 °C in the south. In 
addition, the spread of the most likely ranges of future out-
comes shows a consistent widening trend from 2030s to 
2080s, implying that long-term climate change is more dif-
ficult to predict than near-term change because many more 
uncertain or unknown factors may continue to emerge dur-
ing the long-term simulation.
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Ontario

1  Introduction

Global warming induced by the increasing concentra-
tion of greenhouse gases (GHGs) in the atmosphere is 
driving many significant and harmful changes to our cli-
mate, health, and surrounding environment in various 
forms (IPCC 2014; Rosenzweig 2007; Yohe et  al. 2007), 
such as frequent and intense heat waves (e.g., Beniston 

Abstract  As the biggest economy in Canada, the Prov-
ince of Ontario is now suffering many consequences 
caused by or associated with global warming, such as 
frequent and intense heat waves, floods, droughts, and 
wind gust. Planning of mitigation and adaptation strate-
gies against the changing climate, which requires a better 
understanding of possible future climate outcomes over the 
Province in the context of global warming, is of great inter-
est to local policy makers, stakeholders, and development 
practitioners. Therefore, in this study, high-resolution pro-
jections of near-surface air temperature outcomes includ-
ing mean, maximum, and minimum daily temperature 
over Ontario are developed, aiming at investigating how 
the global warming would affect the local climatology of 
the major cities as well as the spatial patterns of air tem-
perature over the entire Province. The PRECIS modeling 
system is employed to carry out regional climate ensem-
ble simulations driven by the boundary conditions of a 
five-member HadCM3-based perturbed-physics ensemble 
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2004; Fouillet et  al. 2006), heavy precipitation and flood-
ing (e.g., Christensen and Christensen 2003; Leung and 
Qian 2009), severe and widespread droughts (e.g., Hanson 
and Weltzin 2000; Nicholls 2004), accelerating sea level 
rise (e.g., Church and White 2006; Rignot et al. 2011), as 
well as growing risks to public health, biodiversity, food 
supplies (e.g., Botkin et al. 2007; Diaz 2006; Game et al. 
2011; La Sorte and Jetz 2010; Lobell et al. 2011; Martens 
2002; Schmidhuber and Tubiello 2007). Global warming 
usually has serious worldwide implications, however, the 
climate change impacts associated with global warming 
on different nations or communities may vary consider-
ably by region in terms of the type and magnitude of local 
effects. Planning of mitigation and adaptation strategies to 
climate change therefore requires a nationwide or region-
alized planning and decision making behavior, though the 
international consensus and collaboration are fundamental 
and indispensable towards combating the changing climate 
(Adger et al. 2009; Neil Adger et al. 2005).

Assessing the potential impacts of climate change 
at regional scales can provide a scientific basis for deci-
sion making on mitigation and adaptation policies, thus 
is of great interest to local decision makers, stakeholders, 
as well as development practitioners. A thorough assess-
ment of the local climate change effects is based upon a 
good understanding of what kind of a climate is expected 
in future, which in turn leads to the development of the 
projections of future climate at regional scales. With the 
advancement of numerical modeling and simulation, 
global climate models (GCMs) has been widely used to 
project future climate under different emission scenarios 
(Nakicenovic 2000; Van Vuuren et  al. 2011). Because 
the spatial resolution of GCM outputs is typically too 
coarse for regional impact studies, further downscaling 
is required for deriving regional climate details from the 
coarse-resolution outputs (Giorgi et  al. 1993a, b; Maurer 
et  al. 2007; Wang et  al. 2014b). Downscaling techniques 
are usually classified into two categories: (1) dynami-
cal downscaling through nesting fine-resolution regional 
climate models (RCMs) into GCMs, and (2) statistical 
downscaling involving the development of quantitative 
relationships between large-scale atmospheric variables 
and local weather variables such as temperature and pre-
cipitation (Hewitson and Crane 1996; Wilby and Wig-
ley 1997). Statistical downscaling approaches are usu-
ally referred to as black-box models and widely used in 
the climate research communities because of their easier 
implementation and lower computational requirements in 
comparison with dynamical ones (e.g., Christensen et  al. 
2007; Feddersen and Andersen 2005; Ghosh and Mujum-
dar 2008; Khan et  al. 2006; Maurer and Hidalgo 2008; 
Wang et al. 2013; Wilby et al. 2004). Nevertheless, statis-
tical downscaling methods have many limitations and are 

subject to a number of widely-known assumptions on the 
underlying probabilistic model, parameter stability, as well 
as temporal dependence which are not always satisfied 
(Estrada et  al. 2013). By contrast, RCMs are developed 
using the same laws of physics as described in GCMs to 
account for the sub-GCM grid scale processes with more 
regional details (such as mountain ranges, coastal zones, 
inland waters, and details of soil properties) in a physi-
cally-based way (Feser et al. 2011). By nesting RCMs into 
GCMs, dynamical downscaling can be used to develop the 
improved simulation of the local climate system with pro-
vision of a large number of climate variables at fine spatial 
scales, and is thus increasingly attracting the attention of 
climate impact researchers in recent years (e.g., Caldwell 
et al. 2009; Castro et al. 2005; Chan et al. 2014; Fujihara 
et  al. 2008; Gao et  al. 2013; Gao and Giorgi 2008; Kan-
amitsu et al. 2010; Nobre et al. 2001; Rockel et al. 2008; 
Sánchez et al. 2004; Wang et al. 2014b).

In the past few decades, extraordinary changes have 
taken place to the climatology over the Province of Ontario 
where people are seeing more frequent and intense weather 
anomalies including heat waves, floods, droughts, and wind 
gust, as well as shorter duration of ice cover on and fluc-
tuating water levels in the Great Lakes, leading to a large 
number of weather-related catastrophes accompanied by 
massive losses of life and tremendous socio-economic 
damages (MoE 2011a). In response to these changes, the 
Government of Ontario has been taking prudent steps to 
protect its public health, economy, and communities from 
the harmful effects of climate change (MoE 2011b). The 
realization of such an adaptation initiative mainly depends 
upon how well we know and how confident we are about 
the potential impacts of a changing climate in the context 
of Ontario. Therefore, as an extension of the previous work 
of Wang et al. (2014a), we will investigate in this study how 
the near-surface air temperature (at 1.5 m above sea level) 
over Ontario would be influenced by the global warming 
through a regional modeling approach. Specifically, we 
adopt the PRECIS modeling system which is driven by the 
boundary conditions of a perturbed-physics ensemble of 
HadCM3 to carry out ensemble simulations to the regional 
climate of Ontario. A Bayesian hierarchical model pro-
posed by Wang et al. (2014a, b) is then employed to help 
develop the probabilistic projections of future near-surface 
air temperatures (including mean, maximum, and minimum 
daily temperatures). Following that, the most likely esti-
mates and uncertain ranges of future temperature outcomes 
at 17 major cities are first calculated and analyzed in detail, 
and then the similar analyses are extended to all PRECIS 
grid cells over the entire Province with the purpose of pro-
viding decision makers or policy makers with helpful infor-
mation for assessing the potential effects of climate change 
in the context of Ontario.
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2 � Data and methods

2.1 � Observations of current climate

The observed data for maximum and minimum daily 
temperature (hereinafter referred to as Tmax and Tmin) is 
obtained from the 10-km gridded climate dataset pro-
vided by the National Land and Water Information Ser-
vice (NLWIS), Agriculture and Agri-Food, Canada. The 
NLWIS dataset is interpolated from daily Environment 
Canada climate station observations through a thin plate 
smoothing spline surface fitting method as implemented 
by ANUSPLIN V4.3 (NLWIS 2007). Mean daily tem-
perature (or Tmean) on each 10-km grid is estimated by the 
average of Tmax and Tmin. Observations from the NLWIS 
dataset are available for the period of 1961–2003, here we 
extract the data for 1961–1990 (hereinafter referred to as 
baseline period) to represent the observations of current 
climate in the context of Ontario. The NLWIS dataset is 
further regridded to the 25-km grids specified by the PRE-
CIS model such that the undermentioned validation and 
probabilistic analysis can be conducted at the same spatial 
resolution.

2.2 � Regional climate modeling

In this study, the PRECIS regional climate modeling sys-
tem developed at the UK Met Office Hadley Centre is 
employed to develop high-resolution climate projections 
for the Province of Ontario. The PRECIS system is a flex-
ible, easy-to-use and computationally inexpensive RCM 
designed to provide detailed climate scenarios (Wilson 
et al. 2011). It can be applied easily to any area of the globe 
to generate detailed climate change projections, with the 
provision of a simple user interface as well as a visualiza-
tion and data-processing package. The PRECIS is able to 
run at two different horizontal resolutions: 50 and 25 km, 
with 19 vertical levels using a hybrid coordinate system 
(a combination of σ-coordinate and pressure-based coor-
dinate); and its output variables are available at various 
temporal scales (i.e., annual, seasonal, monthly, daily, and 
hourly). To help explore the uncertainties associated with 
the climate system modeling, here we use a HadCM3-based 
perturbed physics ensemble (named QUMP, denoted by 
HadCM3Q0-16) forced by the SRES A1B emissions sce-
nario as boundary conditions to drive the PRECIS ensem-
ble simulations (Bellprat et  al. 2012). The QUMP dataset 
consists of 17 members and is developed by the Hadley 
Centre to allow users to generate an ensemble of high-
resolution regional climate projections (McSweeney et  al. 
2012). Fully downscaling the QUMP dataset with PRECIS 
would require very large inputs of computing resources, 
data storage, and data analyses (McSweeney and Jones 

2010). In order to explore the range of uncertainties while 
minimizing these requirements, we choose 5 members (i.e., 
HadCM3Q0, Q3, Q10, Q13, and Q15) from the QUMP 
dataset according to the Hadley Centre’s recommendation 
(see http://www.metoffice.gov.uk/precis/qump). In this 
study, the PRECIS model is run at its highest spatial resolu-
tion (i.e., 25 km). There are ~ 1,800 25-km grid points over 
the entire Province (see Fig. 1). Thus, the spatial variability 
of local climatology in the context of Ontario can be simu-
lated in detail.

2.3 � Probabilistic projections of future climate

Forecasts of future climate change with current state-of-
the-art climate models are often subject to many uncertain-
ties due to our incomplete understanding of the climate 
system in terms of its complicated physical processes and 
natural variability (Allen et al. 2000; Murphy et al. 2004; 
Stainforth et al. 2005). It is necessary to utilize results from 
ensemble modeling approaches to project future climate 
change because no single model can be powerful enough to 
tackle the uncertainties all at once (Greene et al. 2006; Har-
ris et al. 2013; Houghton et al. 2001; Watterson and Whet-
ton 2011). Projections of future climate change are usually 
presented in a probabilistic way based upon a variety of 
statistical methods (e.g., Giorgi and Mearns 2002, 2003; 
Tebaldi et al. 2005; Xu et al. 2010), such that more help-
ful information for climate change impact studies and deci-
sion making can be obtained reasonably given that none of 
the model projections for future climate can be validated 
at this stage. In the paper of Wang et al. (2014a), a Bayes-
ian hierarchical model has been proposed to help develop 
probabilistic projections of future climate change based 
on the PRECIS ensemble simulations. Here we adopt the 
same Bayesian model to develop future climate scenarios. 
Specifically, the future temperature scenarios (denoted as  
Tfuture) can be expressed as follows:

where Tobs means the observed temperature for current cli-
mate which can be obtained directly from the NLWIS data-
set, and Δsim indicates the projected change in mean tem-
perature by the PRECIS ensemble simulations. According 
to Wang et al. (2014a), Δsim is a random variable that can 
be represented by the difference between the true value of 
future climate (denoted as ν) and that of current climate 
(denoted as μ), as follows:

where ν and μ are subject to a number of unknown param-
eters which are treated as random variables with unin-
formative prior distributions. Posterior distributions for  
ν and μ can be derived through Bayesian inference 

(1)Tfuture = Tobs + ∆sim

(2)∆sim = ν − µ

http://www.metoffice.gov.uk/precis/qump
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theory. Assumptions on the non-informative priors of all 
unknown parameters and the derivation of their posteriors 
can be found in the Appendix A of Wang et  al. (2014a). 
The posterior distributions for ν and μ are expressed as 
follows:

(3)

µ ∼ N

(

∑n
i=1

[

�ixi − θβ�i(yi − ν − βxi)
]

+ �0x0

�0 +
∑n

i=1 �i

(

1 + θβ2
) ,

1

�0 +
∑n

i=1 �i

(

1 + θβ2
)

)

(4)ν ∼ N

(

∑n
i=1 �i

[

yi − β(xi − µ)
]

∑n
i=1 �i

,
1

θ
∑n

i=1 �i

)

where n means the total number of members in the PRE-
CIS ensemble; xi and yi represent the simulated tempera-
ture means for current and future climate by the ith PRECIS 
run; x0 indicates the biased observations of mean tempera-
ture for current climate with consideration of random errors 
(e.g., measurement and sampling) and systematic errors due 
to different measurement platforms and practices (Wang 
et  al. 2014a). The remaining parameters (i.e., λ0, λi, β, θ) 
are adopted to reflect various uncertainties associated with 
the PRECIS ensemble simulations, and their definitions are 
detailed in the paper of Wang et  al. (2014a). An empirical 
estimate of the posterior distribution for Δsim can be obtained 
through a Gibbs-based Markov chain Monte Carlo (MCMC) 
implementation to the proposed model, thus the probabilistic 
projections for Tfuture can be generated according to Eq. (1).

Fig. 1   Major cities and 25-km PRECIS grid points in Ontario, Canada
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2.4 � Interpretation of probabilistic projections

Probabilistic projections assign a probability to the differ-
ent possible outcomes for future climate, instead of giv-
ing a single answer, to help with making robust adaptation 
decisions (Murphy et  al. 2009). Due to the imperfectness 
of climate models, we only can give plausible distribution 
for future climate outcomes. We cannot provide an abso-
lute probability to describe the occurrence of each possi-
ble outcome. Instead we talk about the probability of future 
projections being less than or greater than a certain value. 
Following the approach used in UK Climate Projections 
science report—UKCP09 (Murphy et al. 2009), we employ 
the cumulative distribution function (CDF) in this study 
to define the probability of future temperature projections 
being less than or greater than a given amount. Specifically, 
we use a cumulative probability of 90 % to describe proba-
bilistic projections by saying that the projected temperature 
is very likely to be less than or very unlikely to be greater 
than a given value; we use a cumulative probability of 10 % 
to indicate very likely to be greater than or very unlikely 
to be less than; and we define the value with a cumulative 

probability of 50 % as the central estimate of future projec-
tions (also known as the median of the distribution) (Mur-
phy et al. 2009; Wang et al. 2014a). For convenience, we 
use the term of probability rather than cumulative probabil-
ity in the rest of this article.

3 � Results

3.1 � PRECIS ensemble validation

To validate the capability of PRECIS ensemble experi-
ments in reproducing the temperature means of current cli-
mate in the context of Ontario, we extract the simulations 
of three temperature variables (i.e., Tmean, Tmax and Tmin) 
for the baseline period from each model run. By combining 
the simulations from five PRECIS runs, we obtain a range 
of projected temperature for the baseline period which are 
bounded by the maximum and minimum of the ensemble 
runs. Thus, we can validate the performance of PRECIS 
ensemble simulations by checking if observations of cur-
rent temperature are within the predicted range. We first 
analyze the performance in simulating the observed tem-
perature means at 17 major cities (including some Indian 
reserves) which are spatially distributed across the land-
mass of Ontario (see Table  1). Then, we extend the sim-
ilar analysis to cover all 25-km grid cells over the entire 
Province, by generating the maps of difference between the 
ensemble simulations (including the minimum, mean, and 
maximum of the ensemble) and the observations for the 
three temperature variables.

Figure  2 shows the validation results at the major cit-
ies for three temperature variables. The observed means 
for Tmean and Tmax at the major cities are well captured by 
the ensemble simulations, except for small warm bias (by 
less than 0.3 °C) for the observation of Tmean in the city of 
Marathon. By contrast, the ensemble simulations demon-
strate poor performance in reproducing the observed means 
for Tmin at most of the major cities. In particular, only the 
observations for Tmin at those cities in southern Ontario 
(i.e., Toronto, Ottawa, London, Windsor, Kingston, and 
Owen Sound) and at the most north city (i.e., Fort Severn) 
are well coverd by the ranges of the ensemble simulations; 
otherwise, the simulations for the remaining cities show 
slight warm bias to the observed Tmin by 0.2–1.5 °C.

Figure  3 shows the maps of difference between the 
ensemble simulations and observations for all 25-km grid 
cells over the entire Province of Ontario. For each tempera-
ture variable, we calculate the minimum, mean, and maxi-
mum of the PRECIS ensemble simulations and map their 
differences from the observations at grid point scales. The 
results indicate that the differences for Tmean mainly range 
between −3  °C (in the Min maps) and 3  °C (in the Max 

Table 1   Major cities in the Province of Ontario

a  Mostly obtained from the 2011 Census of Population released by 
Statistics Canada, available at: http://www12.statcan.gc.ca/census-
recensement/2011/dp-pd/index-eng.cfm
b  Indian reserve
c  Derived from other data source: http://www.wakenagun.ca/
Adobe/moosefactory.pdf
d  Obtained from the 2006 Census of Population released by Statis-
tics Canada, available at: http://www12.statcan.gc.ca/census-recense-
ment/2006/index-eng.cfm

No. City name Longitude Latitude Populationa

1 Toronto 79°23′W 43°39′N 2,615,060

2 Ottawa 75°41′W 45°24′N 883,391

3 London 81°15′W 42°59′N 366,151

4 Windsor 83°03′W 42°18′N 210,891

5 Kingston 76°30′W 44°14′N 123,363

6 Thunder Bay 89°14′W 48°25′N 108,359

7 Sault Ste. Marie 84°20′W 46°31′N 75,141

8 Timmins 81°20′W 48°29′N 43,165

9 Owen Sound 81°00′W 44°34′N 21,688

10 Sudbury 81°00′W 46°29′N 21,196

11 Kenora 94°29′W 49°46′N 15,348

12 Marathon 86°23′W 48°43′N 3,353

13 Moose Factoryb 80°36′W 51°16′N 2,458c

14 Sandy Lakeb 93°20′W 53°04′N 1,861

15 Fort Hopeb 87°54′W 51°34′N 1,144d

16 Kitchenuhmaykoosibb 89°53′W 53°49′N 904

17 Fort Severnb 87°38′W 56°00′N 334

http://www12.statcan.gc.ca/census-recensement/2011/dp-pd/index-eng.cfm
http://www12.statcan.gc.ca/census-recensement/2011/dp-pd/index-eng.cfm
http://www.wakenagun.ca/Adobe/moosefactory.pdf
http://www.wakenagun.ca/Adobe/moosefactory.pdf
http://www12.statcan.gc.ca/census-recensement/2006/index-eng.cfm
http://www12.statcan.gc.ca/census-recensement/2006/index-eng.cfm
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maps), which means that the observed Tmean at most of gird 
cells is included within the range bounded by the minimum 
and maximum of the ensemble simulations. Similarly, it 
can be found that the maps also demonstrate the good per-
formance of the PRECIS ensemble in terms of simulating 
the observed Tmax, except for slight cold bias by −1 to 
−3 °C at those grid cells over the Great Lakes (i.e., Lake 
Superior, Lake Huron, Lake Erie, and Lake Ontario). As for 
the maps of Tmin, the calculated differences are mainly var-
ying between 0 °C (in the Min map) and 6 °C (in the Max 
map), implying that the PRECIS ensemble tends to slightly 
overestimate the observed Tmin at most of the grid cells.

3.2 � Future temperature projections

The projections for future temperature in the context of 
Ontario are developed by adding the probabilistic changes 
in temperature to the observed temperature for current 

climate. Here we divide the projections for this century into 
three 30-year periods: 2020–2049 (or 2030s), 2040–2069 
(or 2050s), and 2070–2099 (or 2080s). The annual averages 
of three temperature variables (i.e., Tmean, Tmax, and Tmin) 
are calculated for each 30-yr period to represent the plausi-
ble climatology corresponding to the period. For each vari-
able, the threshold values at three probabilities (i.e., 10, 50, 
and 90 %) are calculated to provide a better understanding 
of possible future outcomes of the three temperature vari-
ables. Specifically, we regard the threshold value at 50 % 
probability as the most likely value of the future outcome; 
the interval bounded by the threshold values at 10 and 90 % 
probabilities is used to represent the mostly likely range 
within which the future outcome will fall. We first analyze 
the projections of three temperature variables at the major 
cities, and then present the maps of projected future tem-
perature covering all 25-km grid cells over the Province of 
Ontario.

Fig. 2   Validation results at the 
major cities. The observed tem-
perature means are displayed 
as round points, and the range 
bounded by the maximum 
and minimum of the ensemble 
simulations is indicated by the 
linear bar
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The projected Tmean, Tmax, and Tmin for the major cities 
at 50 % probability are presented in Table 2. There is a con-
sistent increasing trend in all three temperature variables 
throughout the 17 major cities. For example, the average 
daily mean temperature (i.e., Tmean) in the City of Toronto 
is most likely to be 10.9 °C in 2030s and 12.3 °C in 2050s, 
and it is likely to jump to as high as 13.7 °C to the end of 
this century (i.e., in 2080s); by contrast, the average Tmean 
in the most north city (i.e., Fort Severn) is projected to be 
less than 0 °C (most likely to be −1.6 °C) in 2030s, while 
the value for 2050s is projected to exceed 0 °C (most likely 
to be 0.4 °C) and the mean temperature to the end of this 
century would be as high as 3.0 °C. The similar increasing 
trends for Tmax and Tmin are also reported by the PRECIS 
ensemble simulations.

Figures  4, 5 and 6 show the most likely ranges 
(expressed as 10–90  % probability range) of the possible 
future outcomes of Tmean, Tmax, and Tmin at all major cities. 

It is reported that the spread of the ranges at all major cit-
ies for all three temperature variables shows a consistent 
widening trend with time periods. For example, the most 
likely range of the Tmean in the City of Ottawa would be 
[8.3, 8.6] °C (with a spread of 0.3 °C) in 2030s, while the 
projected ranges in 2050s and 2080s would expand to [9.6, 
10.3] °C (with a spread of 0.7 °C) and [10.7, 12.1] °C (with 
a spread of 1.4 °C), respectively; by comparison, the width 
of the projected ranges of Tmean in Fort Severn is likely 
to increase significantly from 0.8  °C in 2030s, to 1.4  °C 
in 2050s, and to as wide as 3.5 °C to the end of this cen-
tury. Similar expanding patterns in terms of the spread of 
the most likely ranges of Tmax and Tmin are also revealed 
at all major cities. Such a consistent expanding trend in 
the width of the most likely ranges of future temperature 
outcomes from 2030s to 2080s suggests that the long-term 
climate change is more difficult to forecast than the near-
term change, as many more uncertain or unknown factors 

Fig. 3   Validation results at all 
25-km grid cells over Ontario. 
The Min maps (placed in the 
1st column) show the difference 
between the minimum of the 
PRECIS ensemble simula-
tions and the observations for 
each temperature variables. 
Similarly, the Mean and Max 
maps (placed in the 2nd and 3rd 
columns) show the differences 
of the mean and maximum of 
the ensemble from the observed 
values, respectively
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affecting the long-term climate change might emerge as 
time goes and thus challenge our current understanding 
of the climate system as well as the complexity of climate 
change mechanisms (Claussen et al. 2002; Held 2005).

Figure 7 presents the maps of projected Tmean, Tmax, and 
Tmin for three periods (i.e., 2030s, 2050s, and 2080s) at 
50 % probability for all 25-km grid cells over the Province 

of Ontario. The results suggest that the most likely mean 
temperature in 2030s would be [−2, 2]  °C in northern 
Ontario, [2, 6] °C in the middle, and [6, 12] °C in the south. 
The mean temperature in 2050s is projected to increase by 
2 °C throughout the Province and would be [0, 4] °C in the 
north, [4, 8] °C in the middle, and [8, 14] °C in the south, 
respectively. Likewise, the projected mean temperature in 

Table 2   Projected Tmean, Tmax, 
and Tmin for the major cities at 
50 % probability

No. City name Tmean (°C, 50 %) Tmax (°C, 50 %) Tmin (°C, 50 %)

2030s 2050s 2080s 2030s 2050s 2080s 2030s 2050s 2080s

1 Toronto 10.9 12.3 13.7 15.3 16.8 18.2 6.6 7.9 9.2

2 Ottawa 8.4 9.9 11.4 13.8 15.4 16.8 3.2 4.6 6.2

3 London 10.2 11.6 13.1 15.1 16.6 18.2 5.4 6.6 8.0

4 Windsor 12.1 13.5 15.0 16.6 18.0 19.6 7.6 8.9 10.3

5 Kingston 9.8 11.3 12.6 14.3 15.9 17.2 5.3 6.7 8.2

6 Thunder Bay 4.7 5.9 7.6 10.5 11.9 13.7 −0.9 0.5 1.9

7 Sault Ste. Marie 6.2 7.4 9.1 11.6 13.0 14.5 0.9 1.9 3.9

8 Timmins 4.1 5.7 7.4 10.4 11.9 13.6 −2.1 −0.6 1.3

9 Owen Sound 9.0 10.3 11.7 13.7 15.2 16.8 4.3 5.4 6.6

10 Sudbury 6.5 7.9 9.3 12.1 13.5 15.0 0.9 2.3 4.0

11 Kenora 4.8 6.2 7.8 10.5 11.8 13.7 −0.8 0.6 2.0

12 Marathon 3.8 5.0 7.1 9.1 10.5 12.1 −1.0 0.3 2.4

13 Moose Factory 2.0 3.8 6.1 8.0 9.8 12.1 −4.0 −2.2 0.0

14 Sandy Lake 1.6 3.1 4.6 7.0 8.5 10.1 −3.7 −2.3 −1.0

15 Fort Hope 1.6 2.8 4.6 7.6 9.0 10.6 −4.3 −2.8 −0.8

16 Kitchenuhmaykoosib 0.0 1.5 3.0 5.3 6.8 8.3 −5.7 −3.7 −1.8

17 Fort Severn −1.6 0.4 3.0 3.2 5.2 7.7 −6.5 −4.8 −2.4

Fig. 4   Projected ranges of Tmean at the major cities
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2080s is likely to keep rising following the similar pattern. 
Such a consistent warming trend throughout the Province 
would drive the lowest mean temperature up to 2 °C in the 
north and the highest mean temperature up to 16 °C in the 
south. Similar increasing patterns in the context of Ontario 
are also projected for the other two variables (i.e., Tmax and 
Tmin). The projected highest Tmax in the south is likely to 

jump to as high as 20 °C in 2080s, while the lowest Tmin in 
the north is projected to be above −4 °C to the end of this 
century.

To future investigate the uncertainties involved in the 
probabilistic projections for future temperature obtained 
from the PRECIS ensemble simulations, we define the 
degree of uncertainty which is expressed as the width 

Fig. 5   Projected ranges of Tmax at the major cities

Fig. 6   Projected ranges of Tmin at the major cities
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or spread of most likely range (i.e., 10–90  % probability 
range) because the wider the range is, the more uncertain or 
the less reliable the projection is. Figure 8 shows the maps 
of degree of uncertainty for future projections of Tmean, 
Tmax, and Tmin in the periods of 2030s, 2050s, and 2080s. It 
can be found that there is an overall increasing trend in the 
degree of uncertainty for three temperature variables with 
time periods, which further confirms our findings based on 
the projections for the major cities—the long-term climate 
change tends to be more difficult to predict than the short-
term does due to many emerging or unknown factors in the 
long-term climate simulation. The maps show that projec-
tions of Tmax demonstrate the least degree of uncertainty, 
while Tmean reveals moderate degree of uncertainty and 
Tmin comes with the highest degree of uncertainty. More-
over, the maps report an apparent decreasing trend in the 
degree of uncertainty for three temperature variables along 
with the latitude, especially for the projections in 2080s. 
In other words, the projections for northern areas display 

higher degree of uncertainty than those for southern areas 
do. For example, the projections of Tmean in 2080s show 
less degree of uncertainty (ranging between 0 and 1  °C) 
in the south while degree of uncertainty can be as high as 
[2.5, 3.5] °C in the north, implying that the projections of 
Tmean in the south seems to be more reliable than those in 
the north. Similar findings on the spatial pattern of degree 
of uncertainty are also reported for Tmax and Tmin.

4 � Conclusions

In this study, high-resolution projections of near-surface 
air temperature outcomes including mean, maximum, and 
minimum daily temperature over the Province of Ontario 
are developed. The aim was to investigate how global 
warming can affect the local climatology of the major cit-
ies as well as the spatial patterns of air temperature over 
the entire Province. We first carried out five-member RCM 

Fig. 7   Future temperature pro-
jections over Ontario at 50 % 
probability
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ensemble simulations using the PRECIS modeling sys-
tem which was driven by the boundary conditions of a 
HadCM3-based perturbed-physics ensemble. The Bayesian 
hierarchical model proposed by Wang et al. (2014a, b) was 
then used to obtain probabilistic projections of future tem-
perature outcomes with consideration of some uncertain 
parameters involved in the regional climate modeling pro-
cess. Following that, the most likely estimates and uncer-
tain ranges of future temperature outcomes at 17 major 
cities were calculated and analyzed in detail, and then the 
similar analyses were extended to cover all 25-km grid 
cells over the entire Province with the purpose of providing 
decision makers or policy makers with helpful information 
for assessing the potential effects of climate change in the 
context of Ontario.

The PRECIS ensemble simulations were validated in 
terms of their capability of reproducing the current climate, 
through comparison with the observed temperature means 
from the NLWIS dataset. The validation results showed 

that the ensemble simulations performed very well in cap-
turing the major features of the observed Tmean and Tmax 
at most areas in Ontario, while the projected Tmin for the 
current climate by the ensemble tended to slightly overesti-
mate the observations at most of the grid cells. To minimize 
the influence of the bias of PRECIS ensemble simulations 
on future temperature projections, we only used the ensem-
ble simulations to calculate the probabilities of possible 
changes in near-surface air temperatures and then added 
the probabilistic change scenarios to the observed ones 
for current climate to develop the probabilistic projections 
of future possible temperature outcomes. The probabilis-
tic projections suggested that there would be a consistent 
increasing trend in three temperature variables (i.e., Tmean, 
Tmax, and Tmin) with time periods from 2030s to 2080s. 
The most likely mean temperature in next few decades 
(i.e., 2030s) would be [−2, 2] °C in northern Ontario, [2, 
6] °C in the middle, and [6, 12] °C in the south, afterwards 
the mean temperature is likely to keep rising by ~2 °C per 

Fig. 8   Maps of degree of 
uncertainty for future tempera-
ture projections
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30-year period. The continuous warming across the Prov-
ince would drive the lowest mean temperature up to 2 °C in 
the north and the highest mean temperature up to 16 °C in 
the south. We also found that the spread of the most likely 
ranges of future temperature projections showed a consist-
ent widening trend from 2030s to 2080s, implying that the 
long-term climate change is more difficult to predict than 
the near-term change because many more uncertain or 
unknown factors may continue to emerge as time goes and 
thus challenge our understanding and knowledge of the cli-
mate system and climate change mechanisms.

The high-resolution probabilistic projections developed 
in this study can provide direct inputs for climate impact 
researchers to study the possible impacts of global warm-
ing in the context of Ontario, meanwhile, the findings and 
implications of the study are potentially helpful for decision 
makers and development practitioners in terms of assessing 
the risks and costs associated with climatic change as well 
as planning the mitigation and adaptation strategies against 
the global warming at regional scales.

Acknowledgments  This research was supported by the Natural Sci-
ences Foundation (51190095, 51225904), the Program for Innovative 
Research Team in University (IRT1127), the 111 Project (B14008), 
Ontario Ministry of the Environment  and Climate Change, and the 
Natural Science and Engineering Research Council of Canada.

References

Adger WN, Dessai S, Goulden M, Hulme M, Lorenzoni I, Nelson 
DR, Naess LO, Wolf J, Wreford A (2009) Are there social limits 
to adaptation to climate change? Clim Chang 93:335–354

Allen MR, Stott PA, Mitchell JF, Schnur R, Delworth TL (2000) 
Quantifying the uncertainty in forecasts of anthropogenic climate 
change. Nature 407:617–620

Bellprat O, Kotlarski S, Lüthi D, Schär C (2012) Exploring Perturbed 
physics ensembles in a regional climate model. J Clim 25 4582–4599

Beniston M (2004) The 2003 heat wave in Europe: a shape of things 
to come? An analysis based on Swiss climatological data and 
model simulations. Geophys Res Lett 31:L02202. doi:10.1029/2
003GL018857

Botkin DB, Saxe H, Araujo MB, Betts R, Bradshaw RH, Cedhagen T, 
Chesson P, Dawson TP, Etterson JR, Faith DP (2007) Forecasting the 
effects of global warming on biodiversity. Bioscience 57:227–236

Caldwell P, Chin H-NS, Bader DC, Bala G (2009) Evaluation of a 
WRF dynamical downscaling simulation over California. Clim 
Chang 95:499–521

Castro CL, Pielke RA, Leoncini G (2005) Dynamical downscal-
ing: assessment of value retained and added using the Regional 
Atmospheric Modeling System (RAMS). J Geophys Res Atmos 
1984–2012:110

Chan SC, Kendon EJ, Fowler HJ, Blenkinsop S, Roberts NM, Ferro 
CA (2014) The value of high-resolution Met Office regional 
climate models in the simulation of multi-hourly precipitation 
extremes. J Clim 27:6155–6174

Christensen JH, Christensen OB (2003) Climate modelling: severe 
summertime flooding in Europe. Nature 421:805–806

Christensen JH, Hewitson B, Busuioc A, Chen A, Gao X, Held I, 
Jones R, Kolli RK, Kwon W-T, Laprise R, Rueda VM, Mearns 

L, Menéndez CG, Räisänen J, Rinke A, Sarr A, Whetton P (2007) 
Regional climate projections. Climate change 2007: The physi-
cal science basis. Contribution of working group I to the Fourth 
Assessment Report of the Intergovernmental Panel on Climate 
Change. Cambridge University Press, Cambridge

Church JA, White NJ (2006) A 20th century acceleration in global 
sea‐level rise. Geophys Res Lett 33:L01602. doi:10.1029/200
5GL024826

Claussen M, Mysak L, Weaver A, Crucifix M, Fichefet T, Loutre M-F, 
Weber S, Alcamo J, Alexeev V, Berger A (2002) Earth system 
models of intermediate complexity: closing the gap in the spec-
trum of climate system models. Clim Dyn 18:579–586

Diaz JH (2006) The influence of global warming on natural disasters 
and their public health outcomes. Am J Disaster Med 2:33–42

Estrada F, Guerrero V, Gay-García C, Martínez-López B (2013) A 
cautionary note on automated statistical downscaling methods for 
climate change. Clim Chang 120:263–276

Feddersen H, Andersen U (2005) A method for statistical downscal-
ing of seasonal ensemble predictions. Tellus A 57:398–408

Feser F, Rockel B, von Storch H, Winterfeldt J, Zahn M (2011) 
Regional climate models add value to global model data: a review 
and selected examples. Bull Am Meteorol Soc 92:1181–1192

Fouillet A, Rey G, Laurent F, Pavillon G, Bellec S, Guihenneuc-
Jouyaux C, Clavel J, Jougla E, Hémon D (2006) Excess mortality 
related to the August 2003 heat wave in France. Int Arch Occup 
Environ Health 80:16–24

Fujihara Y, Tanaka K, Watanabe T, Nagano T, Kojiri T (2008) Assess-
ing the impacts of climate change on the water resources of the 
Seyhan River Basin in Turkey: use of dynamically downscaled 
data for hydrologic simulations. J Hydrol 353:33–48

Game ET, Lipsett-Moore G, Saxon E, Peterson N, Sheppard S (2011) 
Incorporating climate change adaptation into national conserva-
tion assessments. Glob Chang Biol 17:3150–3160

Gao X, Giorgi F (2008) Increased aridity in the Mediterranean region 
under greenhouse gas forcing estimated from high resolution simula-
tions with a regional climate model. Glob Planet Chang 62:195–209

Gao X-J, Wang M-L, Giorgi F (2013) Climate change over China 
in the 21st century as simulated by BCC_CSM1. 1-RegCM4. 0. 
Atmos Ocean Sci Lett 6:381–386

Ghosh S, Mujumdar P (2008) Statistical downscaling of GCM simu-
lations to streamflow using relevance vector machine. Adv Water 
Resour 31:132–146

Giorgi F, Mearns LO (2002) Calculation of average, uncertainty 
range, and reliability of regional climate changes from AOGCM 
simulations via the “reliability ensemble averaging” (REA) 
method. J Clim 15:1141–1158

Giorgi F, Mearns L (2003) Probability of regional climate change 
based on the Reliability Ensemble Averaging (REA) method. 
Geophys Res Lett 30(12):1629. doi:10.1029/2003GL017130

Giorgi F, Marinucci MR, Bates GT (1993a) Development of a second-
generation regional climate model (RegCM2). Part I: boundary-layer 
and radiative transfer processes. Mon Weather Rev 121:2794–2813

Giorgi F, Marinucci MR, Bates GT, De Canio G (1993b) Develop-
ment of a second-generation regional climate model (RegCM2). 
Part II: convective processes and assimilation of lateral boundary 
conditions. Mon Weather Rev 121:2814–2832

Greene AM, Goddard L, Lall U (2006) Probabilistic multimodel 
regional temperature change projections. J Clim 19:4326–4343

Hanson PJ, Weltzin JF (2000) Drought disturbance from climate 
change: response of United States forests. Sci Total Environ 
262:205–220

Harris GR, Sexton DM, Booth BB, Collins M, Murphy JM (2013) 
Probabilistic projections of transient climate change. Clim Dyn 
40:2937–2972

Held IM (2005) The gap between simulation and understanding in cli-
mate modeling. Bull Am Meteorol Soc 86:1609–1614

http://dx.doi.org/10.1029/2003GL018857
http://dx.doi.org/10.1029/2003GL018857
http://dx.doi.org/10.1029/2005GL024826
http://dx.doi.org/10.1029/2005GL024826
http://dx.doi.org/10.1029/2003GL017130


Projected increases in near-surface air temperature over Ontario, Canada

1 3

Hewitson B, Crane R (1996) Climate downscaling: techniques and 
application. Clim Res 7:85–95

Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai 
X, Maskell K, Johnson C (2001) Climate change 2001: the scien-
tific basis. Cambridge University Press Cambridge

IPCC (2014) Summary for policymakers. In: Climate change 2014: 
impacts, adaptation, and vulnerability. Part A: global and sectoral 
aspects. Contribution of working group II to the Fifth Assessment 
Report of the Intergovernmental Panel on Climate Change. Cam-
bridge University Press, Cambridge

Kanamitsu M, Yoshimura K, Yhang YB, Hong SY (2010) Errors of 
interannual variability and trend in dynamical downscaling of 
reanalysis. J Geophys Res Atmos 1984–2012:115

Khan MS, Coulibaly P, Dibike Y (2006) Uncertainty analysis of sta-
tistical downscaling methods. J Hydrol 319:357–382

La Sorte FA, Jetz W (2010) Projected range contractions of montane 
biodiversity under global warming. In: Proceedings of the Royal 
Society B: Biological Sciences:rspb20100612

Leung LR, Qian Y (2009) Atmospheric rivers induced heavy pre-
cipitation and flooding in the western US simulated by the WRF 
regional climate model. Geophys Res Lett 36:L03820. doi:10.10
29/2008GL036445

Lobell DB, Schlenker W, Costa-Roberts J (2011) Climate trends and 
global crop production since 1980. Science 333:616–620

Martens D (2002) Warning issued on connection between global 
warming, health. Can Med Assoc J 166:1076

Maurer E, Hidalgo H (2008) Utility of daily vs. monthly large-scale 
climate data: an intercomparison of two statistical downscaling 
methods. Hydrol Earth Syst Sci 12:551–563

Maurer EP, Brekke L, Pruitt T, Duffy PB (2007) Fine-resolution cli-
mate projections enhance regional climate change impact studies. 
Eos Trans Am Geophys Union 88:504

McSweeney C, Jones R (2010) Selecting members of the 
‘QUMP’perturbed-physics ensemble for use with PRECIS, vol 9. 
Met Office Hadley Centre, UK

McSweeney CF, Jones RG, Booth BB (2012) Selecting ensemble 
members to provide regional climate change information. J Clim 
25:7100–7121

MoE (2011a) Climate action: adapting to change, protecting our 
future, 2011. Ontario Ministry of the Environment

MoE (2011b) Climate ready: Ontario’s adaptation strategy and action 
plan, 2011–2014. Ontario Minisitry of the Environment

Murphy JM, Sexton DM, Barnett DN, Jones GS, Webb MJ, Collins 
M, Stainforth DA (2004) Quantification of modelling uncertain-
ties in a large ensemble of climate change simulations. Nature 
430:768–772

Murphy JM, Sexton DMH, Jenkins GJ, Booth BBB, Brown CC, 
Clark RT, Collins M, Harris GR, Kendon EJ, Betts RA, Brown 
SJ, Humphrey KA, McCarthy MP, McDonald RE, Stephens A, 
Wallace C, Warren R, Wilby R, Wood RA (2009) UK climate 
projections science report: climate change projections. Meteoro-
logical Office Hadley Centre

Nakićenović N (2000) Summary for policymakers: emission scenarios: 
a special report of working group III of the Intergovernmental Panel 
on Climate Change. Intergovernmental Panel on Climate Change

Neil Adger W, Arnell NW, Tompkins EL (2005) Successful adaptation 
to climate change across scales. Glob Environ Chang 15:77–86

Nicholls N (2004) The changing nature of Australian droughts. Clim 
Chang 63:323–336

NLWIS (2007) Daily 10 Km gridded climate dataset: 1961–2003, 
version 1.0. National Land and Water Information Service, Agri-
culture and Agri-Food Canada

Nobre P, Moura AD, Sun L (2001) Dynamical downscaling of sea-
sonal climate prediction over Nordeste Brazil with ECHAM3 and 
NCEP’s Regional Spectral Models at IRI. Bull Am Meteorol Soc 
82:2787–2796

Rignot E, Velicogna I, Van den Broeke M, Monaghan A, Lenaerts J 
(2011) Acceleration of the contribution of the Greenland and Ant-
arctic ice sheets to sea level rise. Geophys Res Lett 38:L05503. 
doi:10.1029/2011GL046583

Rockel B, Castro CL, Pielke RA, von Storch H, Leoncini G (2008) 
Dynamical downscaling: assessment of model system dependent 
retained and added variability for two different regional climate 
models. J Geophys Res Atmos 1984–2012:113

Rosenzweig C (2007) Global warming is changing the world. Science 
316:188–190

Sánchez E, Gallardo C, Gaertner M, Arribas A, Castro M (2004) Future 
climate extreme events in the Mediterranean simulated by a regional 
climate model: a first approach. Glob Planet Chang 44:163–180

Schmidhuber J, Tubiello FN (2007) Global food security under cli-
mate change. Proc Natl Acad Sci 104:19703–19708

Stainforth DA, Aina T, Christensen C, Collins M, Faull N, Frame D, 
Kettleborough J, Knight S, Martin A, Murphy J (2005) Uncer-
tainty in predictions of the climate response to rising levels of 
greenhouse gases. Nature 433:403–406

Tebaldi C, Smith RL, Nychka D, Mearns LO (2005) Quantifying uncer-
tainty in projections of regional climate change: a Bayesian approach 
to the analysis of multimodel ensembles. J Clim 18:1524–1540

Van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A, Hib-
bard K, Hurtt GC, Kram T, Krey V, Lamarque J-F (2011) The 
representative concentration pathways: an overview. Clim Chang 
109:5–31

Wang X, Huang G, Lin Q, Nie X, Cheng G, Fan Y, Li Z, Yao Y, Suo M 
(2013) A stepwise cluster analysis approach for downscaled climate 
projection: a Canadian case study. Environ Model Softw 49:141–151

Wang X, Huang G, Lin Q, Liu J (2014a) High-resolution probabilistic 
projections of temperature changes over Ontario, Canada. J Clim 
27:5259–5284

Wang X, Huang G, Lin Q, Nie X, Liu J (2014b) High‐resolution 
temperature and precipitation projections over Ontario, Canada: 
a coupled dynamical‐statistical approach. Q J R Meteorol Soc. 
doi:10.1002/qj.2421

Watterson I, Whetton P (2011) Distributions of decadal means of tem-
perature and precipitation change under global warming. J Geo-
phys Res Atmos 1984–2012:116

Wilby RL, Wigley T (1997) Downscaling general circulation model 
output: a review of methods and limitations. Prog Phys Geogr 
21:530–548

Wilby R, Charles S, Zorita E, Timbal B, Whetton P, Mearns L  
(2004) Guidelines for use of climate scenarios developed from 
statistical downscaling methods. http://www.narccap.ucar.edu/
doc/tgica-guidance-2004.pdf

Wilson S, Hassell D, Hein D, Morrell C, Tucker S, Jones R, Taylor 
R (2011) Installing and using the Hadley Centre regional climate 
modelling system, PRECIS 

Xu Y, Gao X, Giorgi F (2010) Upgrades to the reliability ensemble 
averaging method for producing probabilistic climate-change 
projections. Clim Res 41:61–81

Yohe GW, Lasco RD, Ahmad QK, Arnell NW, Cohen SJ, Hope C, 
Janetos AC, Perez RT (2007) Perspectives on climate change and 
sustainability. Climate change 2007: impacts, adaptation and vul-
nerability. Contribution of working group II to the Fourth Assess-
ment Report of the Intergovernmental Panel on Climate Change. 
Cambridge University Press, Cambridge, UK, pp 811–841

http://dx.doi.org/10.1029/2008GL036445
http://dx.doi.org/10.1029/2008GL036445
http://dx.doi.org/10.1029/2011GL046583
http://dx.doi.org/10.1002/qj.2421
http://www.narccap.ucar.edu/doc/tgica-guidance-2004.pdf
http://www.narccap.ucar.edu/doc/tgica-guidance-2004.pdf

	Projected increases in near-surface air temperature over Ontario, Canada: a regional climate modeling approach
	Abstract 
	1 Introduction
	2 Data and methods
	2.1 Observations of current climate
	2.2 Regional climate modeling
	2.3 Probabilistic projections of future climate
	2.4 Interpretation of probabilistic projections

	3 Results
	3.1 PRECIS ensemble validation
	3.2 Future temperature projections

	4 Conclusions
	Acknowledgments 
	References


