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Abstract
In this study, a coupled dynamical-copula downscaling approach was developed through integrating the Providing Regional 
Climates for Impacts Studies (PRECIS) modeling system and the copula method. This approach helps to reflect detailed 
features at local scales based on dynamical downscaling, while also effectively simulating the interactions between large-scale 
atmospheric variables (predictors) and local surface variables (predictands). The performance of the proposed approach in 
reproducing historical climatology of the Canadian Prairies was evaluated through comparison with observations. Future 
climate projections generated by the developed approach were analyzed over three time slices (i.e., the 2030s, 2050s, and 
2080s) to help understand the plausible changes in temperature over the Canadian Prairies in response to global warming. 
The results showed that there would be an apparent increasing pattern over the Canadian Prairies. The projections of future 
temperature over three time slices can provide decision makers with valuable information for climate change impacts assess-
ment over the Canadian Prairies.
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1  Introduction

Climate change is one of the most important and urgent 
environmental issues facing the globe. To investigate the 
potential impacts of climate change, climatic change projec-
tions are usually generated through global climate models 
(GCMs) under the representative concentration pathways 
(IPCC 2013; Van Vuuren et al. 2011). However, GCMs with 
a coarse resolution over 100 km are unable to reflect the 
mechanisms of climate at local scales. Future climate projec-
tions at a much higher resolution are a central prerequisite 
for conducting climate change impact studies (Jury et al. 
2015; Notaro et al. 2015; Pérez et al. 2014). Therefore, to 
improve the representation of local climatology, downscal-
ing techniques are required to tackle the spatial mismatch 

between GCMs and impacts assessment models (Hessami 
et al. 2008; Wang et al. 2013).

Previous studies have attempted to investigate the poten-
tial improvements through developing coupled dynam-
ical-statistical or statistical-dynamical approaches for 
high-resolution climate projections (Bechler et al. 2015; 
Chavez-Arroyo et al. 2015; Gong et al. 2015; Hellström and 
Chen 2003; Kim et al. 2015; Li et al. 2016; Quintana-Seguí 
et al. 2016; Reyers et al. 2015; Sun et al. 2015; Tang et al. 
2016; Walton et al. 2015; Wang et al. 2015a; Zollo et al. 
2015). For example, Wang et al. (2013) developed a statisti-
cal downscaling tool (SCADS) to assist obtaining high-reso-
lution climate change scenarios based on the stepwise cluster 
analysis method, which used a cluster tree to represent the 
complex relationship between large-scale atmospheric vari-
ables (predictors) and local surface variables (predictands). 
Wang et al. (2015a) integrated the PRECIS regional mode-
ling system and the statistical method SCADS into a coupled 
dynamical-statistical downscaling framework, which helped 
generate very high resolution (i.e., 10 km × 10 km) climate 
projections for the Province of Ontario, Canada. Walton 
et al. (2015) developed a hybrid dynamical-statistical tech-
nique through integrating the computational savings of a sta-
tistical model to downscale multiple GCMs and the ability 
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of dynamical downscaling to capture fine-scale dynamics, 
which demonstrated considerable improvement in capturing 
the spatial details. Moreover, the proposed hybrid dynami-
cal-statistical technique was further applied to generate the 
end-of-century warming projections for predicting a new 
climate state in the Los Angeles Region (Sun et al. 2015).

Nevertheless, previous studies were unable to describe 
the dependence structure independently from the mar-
ginal distributions of both simulations and observations 
without any transformation (Genest and Favre 2007; Sraj 
et al. 2015). Meanwhile, there were few reports of coupled 
dynamical-statistical or statistical-dynamical downscaling 
approaches for generating high-resolution climate projec-
tions in the context of the Canadian Prairies. Previous stud-
ies have been mostly focused on the application of a single 
technique (either dynamical or statistical downscaling) for 
conducting climate change impact studies over the context 
of the Canadian Prairies Provinces (Asong et al. 2016; Chun 
et al. 2013; Gameda et al. 2007; PaiMazumder et al. 2013; 
Shepherd and McGinn 2003).

Therefore, the objective of this study is to downscale and 
analyze changes in temperature over the Canadian Prairies 
through a coupled dynamical-copula approach. It will incor-
porate the Providing Regional Climates for Impacts Studies 
(PRECIS) and a statistical downscaling method (i.e., copula) 
into a generalized framework to construct high-resolution 
climate projections for the Canadian Prairies. In detail, the 
PRECIS model will be employed to project the future cli-
mate over the Canadian Prairies at its highest spatial resolu-
tion of 25 km. The copula model will then be developed to 

obtain daily time series of mean, maximum, and minimum 
temperature in the study region. The performance of the 
coupled dynamical-copula downscaling approach in repro-
ducing the relevant observations of the study region will 
be evaluated and presented. Moreover, the approach will 
be compared to the quantile mapping method (Boé et al. 
2007; Piani et al. 2010) to further demonstrate its perfor-
mance. Finally, future changes in the mean, minimum, and 
maximum temperature will be analyzed to help understand 
the regional and local effects of global warming in the con-
text of the Canadian Prairies. It is expected that changes 
in the mean, maximum, and minimum temperature will be 
explored in the upcoming decades. The results in this study 
can provide valuable information to avoid severe impacts of 
climatic changes on economic, social, and environmental 
sectors at regional and local scales.

2 � Model, study area, and data

As shown in Fig. 1, the Canadian Prairies comprise the 
Provinces of Manitoba, Saskatchewan, and Alberta, which 
are bordered by the Province of British Columbia to the 
west, and the Northwest Territories to the north, the Prov-
ince of Ontario to the east, and the United States of Amer-
ica to the south. The total area of the Canadian Prairies is 
1,960,681 km2 and accounts for 19.6% of the total area in 
Canada (Statistics Canada 2015). The current population is 
6.62 million, approximately 18.5% of Canada’s population 
(Statistics Canada 2015).

Fig. 1   The study area and 16 selected cities
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In general, the climate of the Canadian Prairies is cold 
and subhumid due to its location in mid latitudes and the rain 
shadow of the Rocky Mountains (Natural Resources Canada 
2015). During the period of 1986–2005, the averaged winter 
temperature is − 19.4 °C for 154 stations over the Canadian 
Prairies, whereas the averaged summer temperatures are 
12 °C. The average increase in annual mean temperature 
since 1895 for climate stations across the Prairies is 1.6 °C 
(deJong et al. 2010; Natural Resources Canada 2015; Zhou 
et al. 2015). Moreover, the maximum and minimum tem-
perature has increased by 1.7 and 1.1 °C during the period of 
1950–1989, respectively (Skinner and Gullett 1993). During 
the period of 1920 –1995, the average amount of annual pre-
cipitation has increased 0.62 mm due to a warmer and earlier 
spring (Akinremi et al. 2001). The increase in annual mean 
temperature has contributed to both an enhanced greenhouse 
gas effect and land-cover changes (Skinner and Majorowicz 
1999). In the Canadian Prairies, climatic change is expected 
to have significance consequences on agriculture, energy and 
other socio-economic sectors. However, understanding how 
the climate will change in both short and long terms is criti-
cal for developing adaptive strategies in the context of the 
Canadian Prairies. Therefore, it is desirable to downscale 
climate projections over the Canadian Prairies for improving 
mitigation and adaptation strategies against climate change.

In this study, the latest version of the PRECIS regional 
climate modeling system (PRECIS2.0) developed by the 
UK Hadley Centre is employed to develop fine-scale physi-
cally-based climate projections over the Canadian Prairies. 
It can be applied easily to any area of the globe to provide 
detailed regional climate change projections for conducting 
impacts studies (Jones and Hassell 2004; Wang et al. 2015b). 
The PRECIS model can be run at two different horizontal 
resolutions: 0.44° × 0.44° and 0.22° × 0.22°, which respec-
tively provides a minimum resolution of 50 km × 50 km and 
25 km × 25 km at the equator of the rotated grid (Centella-
Artola et al. 2015; Wang et al. 2014). The PRECIS model 
comprises 19 levels described by a hybrid vertical coordi-
nate (a combination of σ-coordinate and pressure coordi-
nate), which is a hydrostatic, primitive equation grid-point 
model (Wang et al. 2015b; Wilson et al. 2005). The convec-
tive scheme is the mass flux penetrative scheme with an 
explicit downdraught (Gregory and Rowntree 1990), while 
the Met Office Surface Exchange Scheme is employed as 
the land surface model component (Cox et al. 1999). The 
radiation scheme includes the seasonal and diurnal cycles 
of insolation, computing short wave and long wave fluxes 
(Jones et al. 2004). Jones et al. (2004) described the detailed 
model parameterization.

The PRECIS system can be driven by boundary data 
from the HadGEM2-ES historical experiment (1950–2005) 
and future experiments under Representative Concentration 
Pathways (RCPs) (2006–2099). The GHG concentration 

trajectories of RCPs (i.e., RCP2.6, RCP4.5, RCP6, and 
RCP8.5) are generally different than each other after 2050. 
More details are can be found in Moss et al. (2010). In this 
study, the PRECIS model first runs at its highest resolution 
(i.e., 25 km) driven by boundary data from the HadGEM2-
ES historical experiment from 1950 to 2005 with the pur-
pose of providing full simulations for present-day climate. 
The boundary data from HadGEM2-ES RCP4.5 and RCP8.5 
scenario experiments (2006–2099) are then downscaled 
through the PRECIS model to generate projections for future 
climate. Outputs from the PRECIS ensemble simulations 
are extracted and split into four 20-year periods, includ-
ing 1986–2005 (the baseline period), 2016–2035 (2030s), 
2046–2065 (2050s), and 2076–2095 (2080s).

To conduct the below downscaling and validation analy-
sis, the daily mean, maximum, and minimum temperature 
used in this study for the period of 1986 to 2005 is obtained 
from Environment and Climate Change Canada (Environ-
ment and Climate Change Canada 2015). In this study, 16 
cities are selected, which are spatially distributed across 
the Canadian Prairies (Fig. 1). The data between 1986 and 
2005 at these cities is extracted to represent the observa-
tions of historical climate in the context of the Canadian 
Prairies. The first 10-year data (i.e., 1986–1995) were used 
for development of coupled dynamical-copula downscaling 
model, and the remaining 10-year (i.e., 1996–2005) data are 
emplyed for the model validation.

3 � Methodology

In general, copula functions can provide a functional link 
between two univariate marginal distributions (Nelsen 2007; 
Fan et al. 2017): 

where FXY (x, y)is the joint cumulative distribution function 
of (X, Y); FX(x) and FY (y) are marginal distributions of ran-
dom vectors X and Y. The Copula function is able to derive 
joint distributions given the marginal distributions, and 
allows for modeling the dependence between two random 
variables (Nelsen 2007; Fan et al. 2016). A large number 
of different copula families mainly including the Archime-
dean, elliptical, extreme value copulas are widely used in 
practice. Among them, the Archimedean copula family is 
quite attractive due to the advantages: (1) it can be easily 
generated; (2) it is able to capture huge varieties of depend-
ence structure with various stochastic copula models; and 
(3) it can be employed for both positively and negatively 
correlated random variables (Jeong et al. 2014). Moreover, 
It is indicated that the copula formulation can be also used 
without much statistical association between the two vari-
ables (Zhang 2005; Zhang and Singh 2006). For example, 

(1)FXY (x, y) = C
(
FX(x), FY (y)

)
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Zhang and Singh (2006) derived the bivariate distributions 
by using the copula method, while the lowest Kendall corre-
lation coefficient is 0.15. In general, a bivariate Archimedean 
copula can be expressed as (Nelsen 2007): 

where u and v are a realisation of U and V, respectively; 
U = FX(x) and V = FY (y) ; FX(x) and FY (y) are cumulative 
distributions function (CDF) of random vector X and Y, 
respectively; the subscript � is the parameter hidden in the 
generation function � (Karmakar and Simonovic 2009). The 
unknown parameter (i.e., � ) in Archimedean copulas can be 
estimated from the Kendall correlation coefficient (Nelsen 
2007). The Archimedean copulas are the most commonly 
used copulas for capturing dependence structure with several 
desirable properties. Therefore, in this study, four single-
parameter bivariate Archimedean copulas (i.e., Clayton, 
Frank, Gumbel, and Joe copulas) are considered. Some basic 
properties for the four families of Archimedean copula are 
listed in Table 1.

Once the parameter for the joint distributions is estimated, 
the root-mean-square error (RMSE) and Akaike information 
criterion (AIC) are used to evaluate the goodness-of-fit of both 
the PRECIS simulations and sample datasets to the theoretical 
joint distribution (Karmakar and Simonovic 2009).The RMSE 
can be expressed as (Willmott and Matsuura 2005): 

where N is the sample size; xe
k
 are the theoretical values 

obtained from the fitted probability distribution; andxo
k
 

denote the empirical probabilities given by the Gringorten 
plotting position formula (Gringorten 1963): 

(2)C�(u, v) = �−1[�(u) + �[v]]

(3)
RMSE =

������
N∑
k=1

�
xe
k
− xo

k

�2

N

(4)P(K ⩽ k) =
k − 0.44

N + 0.12

where k denotes the kth smallest observation; and the obser-
vations is arranged in an increasing order. Based on RMSE, 
the AIC criteria can be obtained as follows (Karmakar and 
Simonovic 2009): 

where k is the number of unknown parameters in the prob-
ability distribution, and MSE represents the mean square 
error (i.e., squared value of RMSE). The potential optimal 
copula is the one with the minimum value of RMSE, AIC or 
a combination of these criteria (Genest et al. 2009).

In order to evaluate the performance of copulas, the 
goodness-of-fit test based on Rosenblatt transformation 
would be employed based on the recommendation of Gen-
est et al. (2009). They argued that test statistics based on the 
Cramér von Mises functional of a process tend to be more 
powerful than those based on the Kolmogorov–Smirnov 
distance taken on the same process (Genest et al. 2009). 
Consequently, Cramér von Mises statistic test was adopted to 
test the performance of the copulas with the corresponding 
p-values being approximated through Monte Carlo simula-
tion. Detailed procedures for performing goodness-of-fit test 
for copulas based on Rosenblatt transformation are provided 
by Genest et al. (2009).

If an appropriate copula function is selected, the con-
ditional joint distribution (i.e., FX(x) , FY (y) , and C�(u, v) ) 
can thus be obtained. Conditional random samples can be 
generated through Monte Carlo simulations. Following Sal-
vadori et al. (2007), the simulation is based on a conditional 
distribution of U given V = v or V given U = u which can be 
expressed as: 

Detailed steps (Fig. 2) for coupled dynamical-copula 
downscaling approach can be summarized as follows:

(5)AIC = N ∗ log(MSE) + 2k

(6)CU|V=v (u) = C(U ⩽ u|V = v ) =
�

�v
C(u, v)|V = v

(7)CV|U=u (v) = C(V ⩽ v|U = u ) =
�

�u
C(u, v)|U = u

Table 1   Properties of the selected bivariate Archimedean copulas

Copula family Function [ C�(u, v)] Range of � Generating functions [ �(t)] � = 1 + 4 ∫ 1

0

�(t)

��(t)
dt

Clayton [
u
−� + v

−� − 1
]−1∕� [−1, ∞)∕{0} t

� − 1 �

�+2

Frank
−

1

�
ln
{
1 +

(e−�u−1)(e−�v−1)
e�−1

}
[−∞, ∞)∕{0} ln

[
e�t−1

e�−1

]
1 −

4

�

[
1

−�
∫ 1

0

t

et−1
dt − 1

]

Gumbel exp
{
−
[
(− ln u)� + (− ln v)�

]1∕�} [1, ∞) (− ln t)� 1 − �−1

Joe 1 −
[
(1 − u)

� + (1 − v)
� − (1 − u)

�
(1 − v)

�
]1∕� [1, ∞) − ln(1 − (1 − t)�)

1 − 4
∞∑
k=1

1

k(�k+2)(�(k−1)+2)
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Step 1 Estimate the marginal distribution FX(x) and FY (y) 
for the PRECS simulation and observation data, respectively.

Step 2 Determine the copula parameter � for the bivariate 
empirical copula (bivariate probability density plot) (Fig. 3) 
and perform goodness-of fit tests to identify the best copula 
function C�(u, v).

Step 3 Calculate the copula distribution of V given U = u 
representing the PRECIS simulation time series.

Step 4 Generate the downscaled samples for the obser-
vations v at each time step through the conditional copula 
distribution.

Step 5 Transform the downscaled samples to the corre-
sponding values through the probability integral transforma-
tion y = F−1

y
(v).

Step 6 Evaluate the copula downscaling approach through 
comparing the model results with the observed data series.

Step 7 Project the changes of future mean, maximum, and 
minimum temperature relative to the baseline period base on 
the validated copula model.

4 � Results and discussion

4.1 � Implementation of the proposed approach

To determine the parameters in the joint distributions, the 
coupled dynamical-copula downscaling approach requires 
the fitting of suitable marginal distributions for both the 
PRECIS simulations and observed data at each city. In the 
present study, non-parametric fitting for the two datasets 

through kernel estimation method is employed. After param-
eter estimation for the marginal distribution, the Kolmogo-
rov–Smirnov (K–S) statistic test is thus used to evaluate the 
performance of the marginal distributions (Argüeso et al. 
2014).

The non-parametric dependence measure (i.e., Kendall’s 
tau) is employed to evaluate the dependence between the 
PRECIS simulations and observed data at each station. Fig-
ure 4d presents the values of Kendall’s tau correlation coef-
ficients for the 16 selected cities. The values of Kendall’s tau 
for all the cities are higher than 0.58, which indicates that the 
PRECIS simulations and observed data are highly correlated 
with each other. The unknown parameters in the four Archi-
medean copulas at each city are determined through inver-
sion of empirical Kendall’s tau. Once the copula parameters 
are determined, the joint cumulative distribution functions 
for all 16 selected cities can be obtained.

To identify the most appropriate copulas for downscaling 
the daily mean temperature, the differences among the four 
chosen copulas are further investigated. Figure 4a presents 
RMSE and AIC for joint distributions obtained through 
different copula functions at each city. It is indicated that 
the differences among the four copulas are relatively small 
for quantifying the joint cumulative probabilities between 
two datasets at each city. For example, the RMSE value for 
the Clayton, Gumbel, Frank, and Joe copula functions to 
downscale the daily mean temperature in Regina is 0.0431, 
0.0215, 0.0115, and 0.0342 respectively. Based on the mini-
mum RMSE (Fig. 4a) and AIC (Fig. 4b) values, it can be 
concluded that the Frank copula would be the most appro-
priate copula to downscale the daily mean temperature. Fig-
ure 4c provides the parameters for the Frank copula for all 
16 cities.

In the meantime, the Rosenblatt transformation with Cra-
mér von Mises statistic is employed to evaluate performance 
in modelling joint distributions of two datasets based on 
the selected most appropriate copula (i.e., Frank copula). 
A parametric bootstrap procedure detailed by Genest et al. 
(2009) is employed to compute p-values in this studies. The 
results of statistic test results for the goodness of fit of the 
joint distributions of two datasets at the 16 selected cities 
are also provided in Fig. 4d. It can be seen that the selected 
Frank copula can be applicable for further downscaling the 
daily mean temperature with the p-values larger than 0.05.

4.2 � Performance in hindcasting current climate

To evaluate the performance of coupled dynamical-copula 
downscaling model in hindcasting recent climate, the values 
of daily mean, maximum, and minimum temperature during 
the period of 1996–2005 are reproduced through the devel-
oped model. The reproduced daily mean, maximum, and 
minimum temperature is then compared with the observed 

RCM Observations

Marginal distribution functions Marginal distribution functions

Select class of copula

Determine parameter Ɵ

Joint CDFs

Generate the downscaled samples 

Perform goodness-of fit tests 

Validation of the coupled dynamical-
copula downscaling approach 

Project changes of future daily mean temperature 

Fig. 2   Schematic diagram of the coupled dynamical-copula downs-
caling approach
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data at the 16 selected cities retrieved from Environment and 
Climate Change Canada. Moreover, the coupled dynamical-
copula downscaling model is compared to the quantile map-
ping (QMAP), which is an efficient statistical downscaling 
and bias correction method. The detailed information of 
QMAP can be found in previous work (Boé et al. 2007; 
Piani et al. 2010). In this study, the values of the R-squared 
coefficient (i.e., coefficient of determination) are calculated 
to evaluate the capability of the developed model in repro-
ducing the observations.

Figure 5 provides the evaluation results of R-squared val-
ues from two models (i.e., the coupled dynamical-copula 
downscaling model and the QMAP method) for observed 
and reproduced monthly mean temperature at each city 
during the evaluation period of 1996–2005. It can be seen 
that the R-squared values for the 10-year period at the 16 
selected cities in the Canadian Prairies are higher than 0.86. 

Moreover, compared to the QMAP method, higher coeffi-
cients of determination consistently demonstrate outstanding 
performance of the coupled dynamical-copula downscaling 
model in terms of reproducing monthly mean temperature.

To further investigate the performance of the developed 
model, the daily mean temperature for monthly variations 
is compared between the observed data and the outputs 
(Fig. 6). The results indicate that simulated estimates and 
spatial patterns of observed monthly mean temperature are 
well captured by the developed model. Figure 6 also com-
pares the results from the coupled dynamical-copula down-
scaling model and the QMAP method. As shown in Fig. 6, 
there are only small differences in the mean temperature 
for monthly time-scales, which further verifies its good 
capability to reproduce the current observed temperature 
for monthly time-scales at the 16 selected cities. Moreover, 
the comparison results of monthly maximum and minimum 
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Fig. 3   Parameter estimation for the bivariate empirical copula from marginal distributions
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temperature are further provided in Figs. 7 and 8. In gen-
eral, the coupled dynamical-copula downscaling model has 
relatively higher coefficients of determination, which further 
demonstrates its performance in simulating both monthly 
maximum and minimum temperature over the Canadian 
Prairies. Therefore, the coupled dynamical-copula downs-
caling model can be an effective tool to downscale the daily 
mean, maximum, and minimum temperature for the selected 
cities in the Canadian Prairies.

4.3 � Projections of future temperature changes

To better understand future temperature changes in the 16 
selected cities across the Canadian Prairies, the future pro-
jections for the three 20-year periods (i.e., the 2030s, 2050s, 

and 2080s) under two RCP scenarios (i.e., RCP4.5 and 
RCP8.5) are developed through the coupled dynamical-cop-
ula downscaling model. The mean climate is then computed 
for the three 20-year periods under the two RCP scenarios 
and compared with the historical climate. The projections 
of changes in daily mean temperature under the two RCP 
scenarios at the 16 selected cities will thus be analyzed for 
providing a better understanding of possible future features. 
Moreover, the developed model will be further employed to 
154 stations, which have less missing data during the period 
of 1986–2005.

Figure  9 presents projected changes in annual mean 
temperature at the 16 selected cities for the 2030s, 2050s, 
and 2080s relative to the historical climate under RCP4.5. 
The results indicate that the annual mean temperature is 

a b

dc

Fig. 4   Copula family comparison through RMSE and AIC, as well as the parameters and goodness-of-fit test for the Frank copula at all cities
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projected to increase over the 16 selected cities for the two 
RCPs considered from the 2030s to the end of this century 
(i.e., the 2080s). For instance, the changes in the annual 
mean temperature for the City of Calgary will be 2.6 °C in 
the 2030s, 3.5 °C in the 2050s, and 4.7 °C to the end of this 
century for the RCP4.5 scenario, while the projected change 
values for the City of Calgary under the RCP8.5 scenario 
will be 2.6 °C in the 2030s, 4.9 °C in the 2050s, and 7.2 °C 
in the 2080s. However, the developed model tends to project 
larger changes in annual mean temperature in the City of 

Regina, where the annual mean temperature is projected to 
be 8.9 °C for the 2030s, 9.9 °C for the 2050s, and 11.1 °C 
for 2080s. This result is consistent with a previous study 
(Zhou et al. 2017), which projected that the annul mean 
temperature in City of Regina under the Special Report on 
Emissions Scenarios is most likely to be 8.3 °C in the 2030s, 
10.5 °C in the 2050s, and 12.5 °C in the 2080s. Moreover, 
the gradually increased pattern in annual mean temperature 
from the 2030s to the end of this century is also agreed with 
the findings in the previous study (Zhou et al. 2017).

Fig. 5   Evaluation results for monthly mean temperature at the 16 selected cities
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Moreover, Fig. 9 depicts projected changes in annual 
mean temperature for the 2030s, 2050s, and 2080s relative 
to the historical climate under RCP8.5. In general, the pro-
jected changes in temperature at the 16 selected cities under 
RCP8.5 are basically similar to those under RCP4.5, but 
the magnitude of changes are different. Specifically, it is 
observed that the projected temperature changes are much 
higher under the high emissions scenario (RCP8.5) than 
that under the RCP4.5 scenario. This is mainly because the 
sensitivity of future projections is increased with the GHG 

concentration in the atmosphere. The results also indicate 
that there is a larger associated variability of projected 
changes under RCP8.5. Moreover, the results indicate that 
there is a gradual increase in the annual mean tempera-
ture from the 2030s, to the 2050s, and the 2080s for the 16 
selected cities.

In order to understand projected dynamics of tempera-
ture changes over the study area temporally, changes in 
monthly mean temperature are computed for the future 
periods. Figure  10 shows changes in monthly mean 

Fig. 6   Comparisons of monthly variations of daily mean temperature at the 16 selected cities
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temperature at the 16 selected cities during the period of 
2076–2095 under the RCP4.5 scenario relative to the mean 
temperature in the baseline period. It is indicated that there 
is a consistent increase of mean temperature in all months 
for the selected 16 cities under RCP4.5, except for a small 
decrease (by less than 0.3 °C) in the mean values in Janu-
ary in the City of Calgary. In Fig. 10, the greatest warm-
ing in the mean temperature for the 2080s under RCP4.5 
occurs in the City of Regina, exceeding 14.4 °C relative 
to the historical climate.

The results also show that the average changes of all 
months for the 16 selected cities are greater than 4.7 °C. 
In particular, changes of the mean temperature in summer 
are larger than those in winter for all 16 selected cities. 
For example, in the City of Winnipeg, there is an apparent 
warming phenomenon in June, July, and August with the 
change as high as 10.7–12.6 °C, while the winter months 
show relatively low increases (by less than 4.4 °C). Simi-
larly, there is a gradually increased trend in the mean val-
ues under RCP8.5, which is a higher emissions scenario 

Fig. 7   Evaluation results for monthly maximum temperature at the 16 selected cities
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(Fig. 11). In addition, it can be seen that the increases in the 
mean temperature during the period of the 2080s are more 
significant under RCP8.5. It thus can be concluded that a 
higher emission scenario will result in a higher change in the 
mean temperature values. Overall, the projected temperature 
to the end of this century for the 16 selected cities across the 
Canadian Prairies will be consistently increased under both 
RCP scenarios.

To further analyze the temperature changes across the 
study area spatially, the developed model is applied to 

extensive weather stations, which have been screened out 
from all the stations across the Canadian Prairies for the 
quality and record length of data. In total, observed tem-
perature data from 154 weather stations are used in this 
study. Figure 12 provides the spatial distribution of pro-
jected changes in annual mean, maximum, and minimum 
temperature in three future periods (i.e., 2030s, 2050s, and 
2080s) under both RCP scenarios for 154 weather stations 
over the Canadian Prairie Province. It can found that there 
is a consistent increasing trend in annual mean temperature 

Fig. 8   Evaluation results for monthly minimum temperature at the 16 selected cities
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values from the 2030s to the end of this century under the 
RCP4.5 and RCP8.5 scenarios. In addition, results in the 
projected maps reflect the spatial variability of the tempera-
ture changes under both RCP scenarios. The stations with 
highest changes of annual mean temperature are mostly 
distributed in the southeast regions, while the stations with 
lowest changes of mean temperature values are projected 
in the northwest regions. This implies that there is a larger 
variability and change in high elevation regions since the 
elevation is increased from the northeast to the southwest. 
Likewise, there are apparent increasing patterns for the 
projected changes in annual maximum (Fig. 12g–l) and 
minimum (Fig. 12m–r) from the coupled dynamical-copula 
downscaling model. However, the developed model projects 
larger increases in the annual minimum temperature than 
in the annual maximum temperature under RCPs for three 
future periods.

Figures 13 and 14 present projected changes in the mean, 
maximum, and minimum temperature for both winter and 
summer in the period of 2030s, 2050s, and 2080s under two 
RCPs. It can be observed that there is a substantial inter-
model variability among seasons. For example, the cou-
pled dynamical-copula downscaling model projects larger 
increases of mean temperature in summer than in winter 
for the 2030s, 2050s, and 2080s. For the mean temperature 

in winter in the period of 2050s under RCP4.5, the larg-
est increase over the Canadian Prairies is expected to be 
7.2 °C. However, the mean temperature is projected to be a 
maximum increase of 13.4 °C in summer in the 2050s under 
RCP4.5. More importantly, the results presented in Figs. 13 
and 14 indicate that the spatial patterns of changes in annual 
mean, maximum, and minimum temperature for both winter 
and summer in the period of 2050s and 2080s under RCP8.5 
are in a similar manner to those under RCP4.5. Neverthe-
less, the magnitude of changes is significantly different 
from the results under RCP4.5, implying that the projected 
changes in annual mean, maximum, and minimum tempera-
ture would be intensified under RCP8.5 due to greater GHG 
concentrations.

5 � Conclusions

In this study, a coupled dynamical-copula downscaling 
approach has been developed to downscale climate change 
projections through integrating the PRECIS regional mod-
eling system and the copula method into a general frame-
work. It can not only reflect detailed features at local scales 
based on dynamically downscaling, but also can effectively 
simulate the dependence structure independently from the 

01: Edmonton

02: Calgary

03: Fort Mcmurray

04: Red Deer

05: Medicine Hat

06: Grande Prairie

07: Key Lake

08: Saskatoon

09: Regina

10: Waseca

11: Pelly

12: Winnipeg

13: Gillam

14: Thompson

15: Brandon

16: The Pas

0 2 4 6 8 10 12

Temperature ( oC )

RCP4.5 RCP8.5

a 2030s

0 2 4 6 8 10 12

Temperature ( oC )

b 2050s

0 2 4 6 8 10 12

Temperature ( oC )

c  2080s

Fig. 9   Projected changes in annual mean temperature at the selected cities
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marginal distributions between the large-scale atmospheric 
variable (predictors) and the local surface variable without 
any transformation. By evaluating the goodness-of-fit of the 
joint distributions, the Frank copula was the most appropri-
ate copula to downscale the daily mean temperature for all 
16 cities based on the tests. The performance of the coupled 
dynamical-copula downscaling approach in hindcasting 
recent climate was also evaluated through comparing model 

simulations with observed data at 16 selected cities across 
the Canadian Prairies. The evaluation results indicate that 
the developed model can capture the current climatology 
over the Canadian Prairies very well.

The coupled dynamical-copula downscaling approach 
was then employed for generating temperature projections 
over the Canadian Prairies under the two RCP scenarios. 
The future climatic changes in the contest of the Canadian 
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Fig. 10   Projected changes in monthly mean temperature at the selected cities between 2076–2095 and 1986–2005 under RCP4.5
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Prairies over three time slices (i.e., the 2030s, 2050s, and 
2080s) were analyzed. The analysis of climatic changes 
indicated that the daily mean temperature is projected 
to be consistently increased over the 16 selected cities 
across the Canadian Prairies for the two RCPs considered 
from the 2030s to the end of this century (i.e., the 2080s). 
The developed model was applied to an extensive array 
of weather stations to further analyze the temperature 

changes across the study area spatially. It is indicated that 
there is a consistent increasing trend in annual mean, max-
imum, and minimum temperature values from the 2030s 
to the end of this century over the 154 weather stations 
under the RCP4.5 and RCP8.5 scenarios. The results also 
reflected apparent spatial variability in the amount of the 
temperature changes over the Canadian Prairies under both 
RCP scenarios.
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Fig. 11   Projected changes in monthly mean temperature at the selected cities between 2076–2095 and 1986–2005 under RCP8.5
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Fig. 12   Projected changes in annual mean (a–f), maximum (g–l), and 
minimum (m–r) temperature of 154 weather stations in the Canadian 
Prairie Province for the 2030s, 2050s, and 2080s under two RCP sce-

narios (color dots represent average change value in annual mean, 
maximum, and minimum temperature)
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Fig. 13   The distribution and change in winter mean (a–f), maximum 
(g–l), and minimum (m–r) temperature of 154 weather stations in 
the Canadian Prairie Province for the 2030s, 2050s, and 2080s under 

two RCP scenarios (color dots represent average change value in win-
ter mean, maximum, and minimum temperature)
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Fig. 14   The distribution and change of summer mean (a–f), maxi-
mum (g–l), and minimum (m–r) temperature of 154 weather stations 
in the Canadian Prairie Province for the 2030s, 2050s, and 2080s 

under two RCP scenarios (color dots represent average change value 
in summer mean, maximum, and minimum temperature)
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